An Offshore Solar Irradiance Calculator (OSIC) Applied to Photovoltaic Tracking Systems

Author:

Bugeja Ryan1ORCID,Mule’ Stagno Luciano1ORCID,Dexarcis Lucas1

Affiliation:

1. Institute for Sustainable Energy, University of Malta, MXK 1531 Marsaxlokk, Malta

Abstract

Offshore photovoltaic installations are the future technology in solar energy since they enable the use of the large amount of maritime space, which is especially important when land space is not available. Various research groups are working to create viable installations. However, there are currently no tools available that an offshore system designer can use to quantify the effect of wave response motion on offshore photovoltaic installations. This research presents a new simulation tool termed the Offshore Solar Irradiance Calculator (OSIC) that is able to quantify this effect. Furthermore, a yearly parametric analysis is presented to show the effects of a characteristic wave equation on different offshore tracking systems; namely, horizontal single-axis tracking, vertical single-axis tracking and dual-axis tracking. Finally, another parametric analysis is presented to show the effects of varying wave amplitudes of oscillations on the incident irradiance received by these tracking systems.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference20 articles.

1. Gevorkian, P. (2012). Alternative Energy Systems in Building Design, McGraw-Hill.

2. Advances in solar photovoltaic tracking systems: A review;Isa;Renew. Sustain. Energy Rev.,2018

3. A Review on Photovoltaic Systems: Mechanisms and Methods for Irradiation Tracking and Prediction;Loschi;Smart Grid Renew. Energy,2015

4. Passive Solar Tracking System;Parmar;Int. J. Emerg. Technol. Adv. Eng.,2015

5. Design of a novel passive solar tracker;Clifford;Solar Energy,2004

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3