Optimization of Nanocomposite Films Based on Polyimide–MWCNTs towards Energy Storage Applications

Author:

Chiriac Adriana Petronela1,Damaceanu Mariana-Dana1,Asandulesa Mihai1ORCID,Rusu Daniela2,Butnaru Irina1

Affiliation:

1. Electroactive Polymers and Plasmochemistry Department, “Petru Poni” Institute of Macromolecular Chemistry, 700487 Iași, Romania

2. Physics of Polymers and Polymeric Materials, “Petru Poni” Institute of Macromolecular Chemistry, 700487 Iași, Romania

Abstract

In order to obtain polyimide-based composite materials for energy storage applications, four synthetic methods towards a polyimide matrix with 2 wt.% pristine or acid-functionalized MWCNTs have been developed. The polyimide is derived from a nitrile aromatic diamine and a fluorene-containing dianhydride which allowed the formation of flexible free-standing nanocomposite films. The films were thoroughly characterized by means of structural identification, morphology, mechanical, thermal and dielectric behavior, as well as the charge storage performance. The obtained data indicated higher homogeneity of the composites loaded with acid-functionalized MWCNTs that enabled significantly increased dielectric properties compared to the matrix. To assess the electrical charge storage capability, cyclic voltammetry and galvanostatic charge–discharge measurements were employed in a three-electrode cell configuration. Due to the higher conductivity of pristine MWCNTs compared to acid-functionalized ones, increased capability to store charges was achieved by the nanocomposites containing these fillers, despite their lower homogeneity. An attempt to increase the carbonaceous material content was made by applying a thin carbon layer onto the nanocomposite film surface, which led to higher capacitance.

Funder

Ministry of Research, Innovation and Digitization, CNCS—UEFISCDI

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3