Investigating the Parameter-Driven Cathode Gas Diffusion of PEMFCs with a Piecewise Linearization Model

Author:

Gu Siwen12,Wang Jiaan1,You Xinmin3ORCID,Zhuang Yu2

Affiliation:

1. School of Photoelectric Engineering, Changzhou Institute of Technology, Changzhou 213032, China

2. Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Institute of Chemical Process Systems Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China

3. Fundamental Aspects of Materials and Energy (FAME), Faculty of Applied Sciences, Delft University of Technology, Mekelweg 15, 2629 JB Delft, The Netherlands

Abstract

Improving mass transfer in gas diffusion layers is critical to achieving high-performance proton-exchange membrane fuel cells (PEMFCs). Leaks through the interface between the gas and the membrane electrode assembly frame have been widely investigated, and the controllability of the cathode gas diffusion has not been achieved in most studies. In this study, we develop a structural parameter to investigate the controllability of the gas diffusion mechanism in the cathode in order to improve upon the design and performance of PEMFCs. This parameter accounts for the cathode gas diffusion layer porosity and carbon loading inside the catalyst layer. It is comprehensively calculated to relax the two segments’ distribution along three directions of the coordinate axis. The experimental and simulation results show that the obtained values of the parameter vary and change during voltage stabilization. According to the results, regardless of the materials in the cathode gas diffusion layer, the same steady-state voltage is obtained when the parameter is fixed. The cell could be controllably operated for a wide range of diffusion layer thicknesses by selecting the optimal parameter.

Funder

Natural Science Research of Jiangsu Higher Education Institutions of China

Industry University Research Cooperation Project in the Jiangsu Province of China

Natural Science Foundation of Liaoning Province

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3