Analysis of a Phase Change Material-Based Condenser of a Low-Scale Refrigeration System

Author:

Cavargna Augusto1,Mongibello Luigi2,Iasiello Marcello1ORCID,Bianco Nicola1

Affiliation:

1. Dipartimento di Ingegneria Industriale (DII), Università di Napoli Federico II, 80125 Napoli, NA, Italy

2. ENEA—Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Portici Research Center, 80055 Portici, NA, Italy

Abstract

This study concerns the numerical simulation and the experimental implementation of a low-scale Phase Change Material-based (PCM-based) condenser, to be included in a PCM-based portable cooling systems. In this category of cooling systems, the PCM can be integrated either in the condenser or in the evaporator. In the present study, the PCM is integrated in the condenser of the vapor compression cycle to absorb the heat power released from the refrigerant fluid (R134a) during condensation, thus eliminating the need to transfer heat to the external environment. The main objective of the present study is to realize and validate a numerical model capable of simulating both the refrigerant fluid and the PCM thermofluid dynamics. For this purpose, a commercial solver was used for the implementation of the developed numerical model, and experimental tests were performed to validate the numerical simulations results. The paper reports the details and test results of both the numerical model and the experimental apparatus. The simulation results indicate a good accordance between the numerical and experimental data.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3