Use of IMU in Differential Analysis of the Reverse Punch Temporal Structure in Relation to the Achieved Maximal Hand Velocity

Author:

Marković StefanORCID,Kos AntonORCID,Vuković Vesna,Dopsaj MilivojORCID,Koropanovski NenadORCID,Umek AntonORCID

Abstract

To achieve good performance, athletes need to synchronize a series of movements in an optimal manner. One of the indicators used to monitor this is the order of occurrence of relevant events in the movement timeline. However, monitoring of this characteristic of rapid movement is practically limited to the laboratory settings, in which motion tracking systems can be used to acquire relevant data. Our motivation is to implement a simple-to-use and robust IMU-based solution suitable for everyday praxis. In this way, repetitive execution of technique can be constantly monitored. This provides augmented feedback to coaches and athletes and is relevant in the context of prevention of stabilization of errors, as well as monitoring for the effects of fatigue. In this research, acceleration and rotational speed signal acquired from a pair of IMUs (Inertial Measurement Unit) is used for detection of the time of occurrence of events. The research included 165 individual strikes performed by 14 elite and national-level karate competitors. All strikes were classified as slow, average, or fast based on the achieved maximal velocity of the hand. A Kruskal–Wallis test revealed significant general differences in the order of occurrence of hand acceleration start, maximal hand velocity, maximal body velocity, maximal hand acceleration, maximal body acceleration, and vertical movement onset between the groups. Partial differences were determined using a Mann–Whitney test. This paper determines the differences in the temporal structure of the reverse punch in relation to the achieved maximal velocity of the hand as a performance indicator. Detecting the time of occurrence of events using IMUs is a new method for measuring motion synchronization that provides a new insight into the coordination of articulated human movements. Such application of IMU can provide additional information about the studied structure of rapid discrete movements in various sporting activities that are otherwise imperceptible to human senses.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3