Author:
Zhang ,Wang ,Song ,Xie ,Fan ,Sun ,Du
Abstract
Renewable geothermal utilization is a significant approach for residential heating with two principal modes, direct geothermal district heating systems (DGDHSs) and indirect geothermal district heating systems (IGDHSs). The key principle of geothermal development design is to prevent premature thermal breakthrough, which could result in low efficiency of geothermal heating systems. In this paper, a new approach considering building heating demand, geothermal water resource protection, and optimal economic benefits is presented systematically. The results simulated by OGS software show that well spacing, reinjection temperature, and production rate are the most significant parameters affecting thermal breakthrough in geothermal reservoirs. In addition, production rate and reinjection temperature have a huge effect on the payback period of investment. Comparing IGDHS to DGDHS, the investment in construction of geothermal wells and the annual water consumption decrease by up to 10% and 50%, respectively. Additionally, electricity costs increase by 5% to 30%. The indirect geothermal district heating system with a well spacing of 300 m, a production rate of 100 m3/h, and a reinjection temperature of 301.15 K is much better for this case, both technically and economically. The systematic calculation approach can be reasonably applied to other regions with geothermal energy utilization.
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献