Abstract
Coronary Angiography (CA) is the standard of reference to diagnose coronary artery disease. Yet, only a portion of the information it conveys is usually used. Quantitative Coronary Angiography (QCA) reliably contributes to improving the measurable assessment of CA. In this work, we developed a new software, CoroFinder, able to automatically identify epicardial coronary arteries and to dynamically track the vessel profile in dye-free frames. The coronary tree is automatically segmented by Frangi’s filter in the angiogram’s frames where vessels are contrasted (“template frames”). Afterward, the image similarity among each template frame and the dye-free images is scored by cross-correlation. Finally, each dye-free image is associated with the most similar template frame, resulting in an estimation of vessel contour. CoroFinder allows locating the position of coronary arteries in absence of contrast dye. The developed algorithm is robust to diverse vessel curvatures, variation of vessel widths, and the presence of stenoses. This article describes the newly developed CoroFinder algorithm and the associated software and provides an overview of its potential application in research and for translation to the clinic.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献