Tailoring the Magnetic and Hyperthermic Properties of Biphase Iron Oxide Nanocubes through Post-Annealing

Author:

Attanayake Supun B.1ORCID,Chanda Amit1ORCID,Das Raja2,Phan Manh-Huong1,Srikanth Hariharan1ORCID

Affiliation:

1. Department of Physics, University of South Florida, Tampa, FL 33620, USA

2. SEAM Research Centre, South East Technological University, X91 K0EK Waterford, Ireland

Abstract

Tailoring the magnetic properties of iron oxide nanosystems is essential to expanding their biomedical applications. In this study, 34 nm iron oxide nanocubes with two phases consisting of Fe3O4 and α-Fe2O3 were annealed for 2 h in the presence of O2, N2, He, and Ar to tune the respective phase volume fractions and control their magnetic properties. X-ray diffraction and magnetic measurements were carried out post-treatment to evaluate changes in the treated samples compared to the as-prepared samples, showing an enhancement of the α-Fe2O3 phase in the samples annealed with O2 while the others indicated a Fe3O4 enhancement. Furthermore, the latter samples indicated enhancements in crystallinity and saturation magnetization, while coercivity enhancements were the most significant in samples annealed with O2, resulting in the highest specific absorption rates (of up to 1000 W/g) in all the applied fields of 800, 600, and 400 Oe in agar during magnetic hyperthermia measurements. The general enhancement of the specific absorption rate post-annealing underscores the importance of the annealing atmosphere in the enhancement of the magnetic and structural properties of nanostructures.

Funder

US Department of Energy, and Office of Basic Energy Sciences, Division of Materials Sciences and Engineering

National Science Foundation, Division of Materials Research, Solid State and Materials Chemistry

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3