Affiliation:
1. Faculty of Industrial Engineering, Universidad Pontificia Bolivariana, University Campus Km 7 Vía Piedecuesta, Floridablanca 681007, Colombia
2. Research Centre on Production Management and Engineering, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
Abstract
This research delves into the transformative potential of additive manufacturing (AM) within the jewelry industry, focusing on materials such as PLA, PolySmooth, and resin to process a ring. The study encompasses an analysis of the materials, the role of the Scanning Electron Microscope (SEM), the CAD design stage, printers, post-processing techniques, and the Input-Transformation-Output (ITO) process. SEM plays a crucial role in understanding material behavior at a micro-level, offering invaluable insights into its selection. The CAD design stage is foundational, providing a precise digital representation before physical production. Additive manufacturing showcases advantages over traditional methods, including design flexibility and production. Various printers and post-processing methods contribute to enhancing the quality and aesthetics of the final products. The Input-Transformation-Output process emerges as a strategic approach for efficient AM implementation. This study highlights the need for the continued exploration and integration of AM, emphasizing its potential to reshape how jewelry is designed, manufactured, and experienced, thereby providing a foundation for further research and advancements in this transformative field. Additionally, each stage of the Input-Transformation-Output process of Polysmooth, PLA, and resin ring prototypes is studied.
Subject
Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering