Revisiting the Crystallography of {225}γ Martensite: How EBSD Can Help to Solve Long-Standing Controversy

Author:

Malet Loïc1,Godet Stéphane1

Affiliation:

1. 4MAT, Ecole Polytechnique de Bruxelles, Campus du Solbosch, Université Libre de Bruxelles, 1050 Brussels, Belgium

Abstract

Explaining the crystallography of iron alloys martensite with a {225}γ habit plane remains a challenging task within the phenomenological theory of martensite crystallography. The purpose of this study is to re-examine the martensite formed in a Fe-8Cr-1.1C alloy using EBSD, which has a better angular resolution than the conventional transmission electron diffraction techniques previously used. The results show that the single morphological plates, which hold a near {225}γ habit plane, are bivariant composites made up of two twin-related variants. It is shown that a {113}γ plane is systematically parallel to one of the three common 112α planes between the two twin-related crystals. This observation suggests that the lattice invariant strain of transformation occurs through a dislocation glide on the {113}γ ⟨110⟩γ system, rather than through twinning as is commonly accepted. Based on this assumption, the predictions of Bowles and Mackenzie’s original theory are in good agreement with the crystallographic features of {225}γ martensite. Unexpectedly, it is the high shear solution of the theory that gives the most accurate experimental predictions.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3