Crystal Chemistry and Structural Complexity of the Uranyl Molybdate Minerals and Synthetic Compounds

Author:

Kuporev Ivan V.1ORCID,Kalashnikova Sophia A.1,Gurzhiy Vladislav V.1ORCID

Affiliation:

1. Crystallography Department, Institute of Earth Sciences, St. Petersburg State University, University Emb. 7/9, St. Petersburg 199034, Russia

Abstract

This paper reviews not the largest, but at the same time quite an interesting, group of natural and synthetic uranyl molybdate compounds. Nowadays, nine minerals of U and Mo are known, but the crystal structures have only been reported for five of them. Almost an order of magnitude more (69) synthetic compounds are known. A significant discrepancy in the topological types for natural and synthetic phases is shown, which is most likely due to elevated temperatures of laboratory experiments (up to 1000 °C), while natural phases apparently grow at significantly lower temperatures. At the same time, the prevalence of dense topologies (with edge-sharing interpolyhedral linkage) among natural phases can be noted, which is fully consistent with other recently considered mineral groups. Uranyl molybdates demonstrate several similarities with compounds of other U-bearing groups; however, even topological matches do not lead to the appearance of completely isotypic compounds. Structural complexity calculations confirm, in general, crystal chemical observations. Considering the prevalence of dense structures in which coordination polyhedra of uranium and molybdenum are connected through common edges as well as framework architectures, one can expect a less significant influence of interlayer species on the formation of the crystal structure than the main U-bearing complexes. The more structural complexity of the uranyl molybdate units, the more complex of the entire crystal structure is. In addition, there is a tendency for complexity to increase with increasing density of the complex; the simplest structures are vertex-shared, while the complexity increases with the appearance of common edges.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3