Growth, Structure, and Electrical Properties of AgNbO3 Antiferroelectric Single Crystal

Author:

Zhao Dengxiaojiang1,Chen Zhenpei1,Li Borui1,Feng Shi1,Luo Nengneng1

Affiliation:

1. State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China

Abstract

AgNbO3 (AN) lead-free antiferroelectric material has attracted great attention in recent years. However, little focus has been directed toward a single crystal that can provide more basic information. In this study, we successfully grew high-quality AN single crystals, using a flux method, with dimensions of 5 × 5 × 3 mm3. A systematic investigation into the crystal structure, domain structure, and electrical properties of a [001]-oriented AN single crystal was conducted. X-ray diffraction and domain structure analysis revealed an orthorhombic phase structure at room temperature. Stripe-like 90° domains aligning parallel to the [110] direction with a thickness of approximately 10–20 μm were observed using a polarized light microscope. The temperature dependence of dielectric permittivity showed M1-M2, M2-M3, and M3-O phase transitions along with increasing temperature, but the phase transition temperatures were slightly higher than those of ceramic. The AN single crystal also exhibited double polarization-electric field (P-E) hysteresis loops, which enabled good recoverable energy-storage density and efficiency comparable to ceramic. Additionally, double P-E loops were kept stable at various temperatures and frequencies, demonstrating robust stability and confirming typical antiferroelectric characteristics. Our work provides valuable insights into understanding the fundamental antiferroelectric properties of AN-based materials.

Funder

National Natural Science Foundation of China

Guangxi Natural Science Fund for Distinguished Young Scholars

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3