Halogen Bonding versus Nucleophilic Substitution in the Co-Crystallization of Halomethanes and Amines

Author:

Grounds Olivia1,Zeller Matthias2,Rosokha Sergiy V.1

Affiliation:

1. Department of Chemistry, Ball State University, Muncie, IN 47306, USA

2. Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA

Abstract

Haloalkanes and amines are common halogen-bond (XB) donors and acceptors as well as typical reagents in nucleophilic substitution reactions. Thus, crystal engineering using these molecules requires an understanding of the interchange between these processes. Indeed, we previously reported that the interaction of quinuclidine (QN) with CHI3 in acetonitrile yielded co-crystals showing a XB network of these two constituents. In the current work, the interactions of QN with C2H5I or 1,4-diazabicyclo[2.2.2]octane (DABCO) with CH2I2 led to nucleophilic substitution producing I− anions and quaternary ammonium (QN-CH2CH3 or DABCO-CH2I+) cations. Moreover, the reaction of QN with CHI3 in dichloromethane afforded co-crystals containing XB networks of CHI3 with either Cl− or I− anions and QN-CH2Cl+ counter-ions. A similar reaction in acetone produced XB networks comprising CHI3, I− and QN-CH2COCH3+. These distinctions were rationalized through a computational analysis of XB complexes and the transition-state energies for the nucleophilic substitution. It indicated that the outcome of the reactions was determined mostly by the relative energies of the products. The co-crystals obtained in this work showed bonding between the cationic (DABCO-CH2I+, QN-CH2Cl+) or neutral (CHI3) XB donors and the anionic (I−, Cl−) or neutral (CHI3) acceptors. Their analysis showed comparable electron and energy densities at the XB bond critical points and similar XB energies regardless of the charges of the interacting species.

Funder

Division of Chemistry of the National Science Foundation

National Science Foundation through the Major Research Instrumentation Program

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3