Distinct Crystallization Pathways of Polyoxymethylene in Methanol System

Author:

Du Haowen1,Zhou Xiaomeng1,Zhang Yaru1,Ye Yang1ORCID,Xuanyuan Shutian1,Yang Sen1,Lao Guorui2,Xie Chuang13

Affiliation:

1. School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China

2. China Kunlun Contracting & Engineering Corporation, Beijing 100037, China

3. National Engineering Research Center of Industrial Crystallization Technology, Tianjin University, Tianjin 300072, China

Abstract

Recrystallization of polyoxymethylene (POM) in solvent is an effective post-treatment method for manufacturing a better POM product. Herein, the crystallization process of POM in methanol was investigated with the use of a series of equipment. The results reveal that POM crystallization in methanol yields two kinds of particle morphologies, including small particles with lamellar structures branching and growing in all directions and large particles resulting from melt agglomeration. The mechanism of POM crystallization in methanol with two distinct pathways was proposed, in which solution cooling crystallization of POM at higher temperature yields small particles while melt crystallization yields large particles. Furthermore, both non-isothermal and isothermal crystallization kinetics of POM were determined. The Avrami equation was employed to derive the crystallization rate constant via data fitting. The activation energy of crystallization was then obtained using the Arrhenius formula. The kinetics suggest that recrystallization of POM in methanol may dissolve and remove substances hindering raw material crystallization, achieving a faster crystallization rate for products.

Funder

CNPC Forward-looking Basic Technology Projects

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3