Effect of TiO2 on the Microstructure and Flexural Strength of Lunar Regolith Simulant

Author:

Chen Junhao1,Chen Haoming1,Zhao Zhe1,Zong Xiao1

Affiliation:

1. School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, China

Abstract

Lunar regolith is the preferred material for lunar base construction using in situ resource utilization technology. The TiO2 variations in lunar regolith collected from different locations significantly impact its suitability as a construction material. Therefore, it is crucial to investigate the effects of TiO2 on the properties of lunar regolith. This study aims to evaluate the influence of TiO2 content and sintering temperature on phase transformation, microstructure, and macroscopic properties (e.g., the shrinkage rate, mechanical properties, and relative density) of lunar regolith simulant samples (CUG-1A). The flexural strength and relative density of the sample with a TiO2 content of 6 wt% sintered at 1100 °C reached 136.66 ± 4.92 MPa and 91.06%, which were 65% and 12.28% higher than those of the sample not doped with TiO2, respectively. The experiment demonstrated that the doped TiO2 not only reacted with Fe to form pseudobrookite (Fe2TiO5) but also effectively reduced the viscosity of the glass phase during heat treatment. As the sintering temperature increased, the particles underwent a gradual melting process, leading to a higher proportion of the liquid phase. The higher liquid-phase content had a positive impact on the diffusion of mass transfer, causing the voids and gaps between particles to shrink. This shrinkage resulted in greater density and, ultimately, improved the mechanical properties of the material.

Funder

the Guangdong Basic and Applied Basic Research Foundation

the Foshan Science and Technology Innovation Team project

the Project funded by China Postdoctoral Science Foundation

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3