Experimental Investigations on the Electrical Conductivity and Complex Dielectric Permittivity of ZnxMn1−xFe2O4 (x = 0 and 0.4) Ferrites in a Low-Frequency Field

Author:

Malaescu Iosif12ORCID,Sfirloaga Paula34ORCID,Marin Catalin N.1,Bunoiu Madalin O.1ORCID,Vlazan Paulina3

Affiliation:

1. Faculty of Physics, West University of Timisoara, Bd. V. Parvan No. 4, 300223 Timisoara, Romania

2. Institute for Advanced Environmental Research, West University of Timisoara (ICAM-WUT), Oituz Str., No. 4, 300086 Timisoara, Romania

3. National Institute of Research and Development for Electrochemistry and Condensed Matter, 144 Dr. A. P. Podeanu, 300569 Timisoara, Romania

4. Spin-Off Nattive-Senz SRL, Str. Dr. A. P. Podeanu, Nr. 144, 300569 Timisoara, Romania

Abstract

Two samples of ZnxMn1−xFe2O4 (x = 0, sample A; and x = 0.4, sample B) were synthesized by the hydrothermal method. From complex impedance measurements in the range 100 Hz–2 MHz and for temperatures T between 30 and 130 °C, the barrier energy between localized states ΔErelax was determined for the first time in these samples. For sample B, a single value of ΔErelax was highlighted (0.221 eV), whilst, for sample A, two values were obtained (0.012 eV and 0.283 eV, below 85 °C and above 85 °C, respectively), associated with two zones of different conductivities. Using the Mott’s VRH model and the CBH model, we determined for the first time both the bandgap energy barrier (Wm) and the hopping (crossover) frequency (ωh), at various temperatures. The results show that, for sample A, Wm has a maximum equal to 0.72 eV at a temperature between 70 and 80 °C, whilst, for sample B, Wm has a minimum equal to 0.28 eV at a temperature of 60 °C, the results being in good agreement with the temperature dependence of the static conductivity σDC(T) of the samples. By evaluating σDC and eliminating the conduction losses, we identified, using a novel approach, a dielectric relaxation phenomenon in the samples, characterized by the activation energy EA,rel. At various temperatures, we determined EA,rel, which ranged from 0.195 eV to 0.77 eV. These results are important, as understanding these electrical properties is crucial to various applications, especially in technologies where temperature variation is significant.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3