Investigating the Role of CNP and CNP Aggregates in the Rheological Breakdown of Triglyceride Systems

Author:

Penagos Ivana A.1ORCID,De Witte Fien1,Rimaux Tom2,Dewettinck Koen1ORCID,Van Bockstaele Filip1ORCID

Affiliation:

1. Food Structure and Function Research Group (FSF), Ghent University, Coupure Links 653, 9000 Ghent, Belgium

2. Vandemoortele R&D Centre, Prins Albertlaan 79, 8870 Izegem, Belgium

Abstract

In many food applications, the mechanical properties of fats play a critical role in determining the processing performance of fat-rich products. In fact, fat crystal networks form a particular class of soft materials that exhibit viscoelastic properties. The uniqueness of the mechanical response is intricately linked to the hierarchical nature of the system, as fats possess a complex architecture encompassing features at different scale levels (i.e., length scales). Since the discovery of crystalline nanoplatelets (CNPs), it has been hypothesized that CNPs are the basic building blocks of lipid networks and that CNPs are the responsible units for the mechanical properties of fats. This hypothesis, however, has only been partially tested. In this article, we examine which units could be responsible (e.g., lamellae, CNP, CNP aggregates) for the mechanical breakdown of fat crystal networks, through Rheo-USAXS in beamline ID02 (ESRF, Grenoble, France). Time-resolved USAXS profiles were acquired during the three steps of a three-interval thixotropy test (3iTT), namely, pre-shear, shear and recovery. The results were then utilized to evidence which specific length scale is arranged (i.e., orientated) during rheological breakdown. The findings suggest that, at the tested shear rates, orientation is only visible from 250 nm onwards, suggesting that the rheological breakdown of triglycerides is primarily driven by the orientation, and possible disruption, of CNP aggregates. These results reveal the critical role of CNP aggregates in the mechanical properties of fats. In the longer term, we believe this study will steer future research toward a more focused understanding of CNP aggregation and disaggregation dynamics.

Funder

The Research Foundation—Flanders

The European Synchrotron Radiation Facility

The Hercules foundation

Vandemoortele Lipids NV

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3