Chitosan–Alginate Nanocontainers with Caffeine as Green Corrosion Inhibitors for Protection of Galvanized Steel

Author:

Kamburova Kamelia1ORCID,Boshkova Nelly1,Radeva Tsetska1,Shipochka Maria2ORCID,Boshkov Nikolai1ORCID

Affiliation:

1. Institute of Physical Chemistry “R. Kaishev”, Bulgarian Academy of Sciences, “Acad. G. Bonchev” St. Bl. 11, 1113 Sofia, Bulgaria

2. Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, “Acad. G. Bonchev” St. Bl. 11, 1113 Sofia, Bulgaria

Abstract

The introduction of new regulations needs to develop eco-friendly systems to prevent corrosion. In this work, a natural corrosion inhibitor caffeine (CAF) was encapsulated in polysaccharide-based nanoparticles, capable of the responsive release of CAF during corrosion. The nanoparticles were prepared using electrostatic complexation between two natural polysaccharides which are oppositely charged—chitosan (CHI) and sodium alginate (ALG), crosslinked by tripolyphosphate (TPP). The particle size distribution and zeta potential were evaluated using dynamic light scattering and laser Doppler velocimetry. The encapsulation efficiency and release of CAF from nanocontainers was evaluated with UV-spectroscopy. The nanoparticles were incorporated via electrodeposition into the zinc coating on low-carbon steel to ensure self-healing. Cyclic voltammetry demonstrated the cathodic and anodic processes in the starting electrolytes. Surface hydrophobicity was investigated by water contact angle (WCA). The corrosion resistance of the coatings was estimated with polarization resistance (Rp) measurements and potentiodynamic polarization (PDP) curves. The study of the chemical composition of the coatings was carried out with X-ray photoelectron spectroscopy. The data obtained confirm the indisputable influence of the nanoparticles/nanocontainers on the protective feature of the hybrids—the latter have about twice-higher Rp values compared to the ordinary zinc.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3