London Dispersive and Lewis Acid-Base Surface Energy of 2D Single-Crystalline and Polycrystalline Covalent Organic Frameworks

Author:

Hamieh Tayssir12ORCID

Affiliation:

1. Faculty of Science and Engineering, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands

2. Laboratory of Materials, Catalysis, Environment and Analytical Methods Laboratory (MCEMA), Faculty of Sciences, Lebanese University, Hadath, Badaro, Beirut P.O. Box 6573/14, Lebanon

Abstract

This paper is devoted to an accurate determination of the London dispersive, polar free energy of adsorption, Lewis acid γs+ and Lewis base γs− components of the polar surface energy γsAB of 2D single-crystalline and polycrystalline covalent organic frameworks such as TAPPy-TPA-COFs. The obtained results showed the highest values of polar and total surface energy of the polycrystalline COF relative to those of the single-crystalline COF. Inverse gas chromatography (IGC) at infinite dilution was used to quantify the various surface parameters of the different materials. The net retention times of the adsorption of n-alkanes and several polar solvents on single-crystalline and polycrystalline covalent organic frameworks were obtained from IGC measurements. The free surface Gibbs energy of adsorption was obtained for the various organic molecules at different temperatures from their net retention volume values. The separation between the London dispersive energy and the polar energy of adsorbed molecules was carried out by using a new thermodynamic parameter PSX chosen as new indicator variable and taking into account the deformation polarizability and the harmonic mean of the ionization energies of solvents and solid materials, derived from the London dispersion equation. The obtained results gave higher acidity (KA=0.22) for the 2D polycrystalline COF than that of the single-crystalline COF (KA=0.15) and an equivalent basicity of the two COFs. The obtained results are very promising for the accurate determination of the surface thermodynamic parameters of adsorption of organic solvents on solid surfaces.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3