Formation and Evolution of Interfacial Structure in Al–Si–Mg/Stainless Steel Bimetals during Hot-Dipping Process

Author:

Kim Byung-Joo1,Lim Ha-Yoon1,Kayani Saif Haider1ORCID,Lee Yun-Soo1ORCID,Kim Su-Hyeon1,Cha Joon-Hyeon2

Affiliation:

1. Metallic Materials Division, Korean Institute of Material Science, Changwon 51508, Republic of Korea

2. Steel Supporting Center Task Force Team, Pohang Institute of Metal Industry Advancement, Pohang-si 37666, Republic of Korea

Abstract

Understanding trends in the formation of the intermetallic compound (IMC) layer in Al/Fe bimetallic composites can aid in significantly improving their mechanical properties. However, it is currently challenging to predict IMC layer formation during hot-dip aluminizing. Furthermore, the results from previous studies are difficult to compare owing to the variation in the process parameters used. Therefore, to understand how temperatures and holding times affect the thickness and hardness properties of IMC layers, we investigated the interfacial properties of aluminized stainless steel in molten Al-Si-Mg. AISI 420 stainless steel was hot-dip aluminized in an Al–Si–Mg alloy melt for 10–120 min at four different temperatures: 700, 750, 800, and 850 °C. Morphology, type, and element distribution of the phases formed in the reaction layer and the reduction rate of the aluminizing process were studied. Notably, while the reaction layer thickness increased with increasing aluminizing temperature when the holding time was low, long-term reaction caused the reaction layer to become thicker at lower temperatures. The mechanism of this morphological transformation is discussed. The results demonstrated effective trends in controlling the morphology of the intermetallic compound layer with respect to various hot-dip Al plating process parameters.

Funder

Fundamental Research Program of the Korea Institute of Materials Science

National Research Foundation of Korea

Korean government

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3