The Electrical Resistivity of Liquid Fe-16wt%S-2wt%Si at High Pressures and the Effect of S and Si on the Dynamo in the Ancient Vestan Core

Author:

Lenhart Erin M.1ORCID,Yong Wenjun1ORCID,Secco Richard A.1ORCID

Affiliation:

1. Department of Earth Sciences, University of Western Ontario, London, ON N6A 3K7, Canada

Abstract

A critical component of predicting thermal convection and dynamo action in the cores of terrestrial planetary bodies is the adiabatic heat flux at the top of the core. Powders of Fe, FeS, and Fe-9wt%Si were mixed to imitate the core of Asteroid 4 Vesta, which studies of HED meteorites indicate is comprised of 13–16wt%S and 1–2wt%Si. In a 1000-ton cubic anvil press, the voltage drop across an Fe-16wt%S-2wt%Si sample of 8–10 mm3 was measured at 2, 3, 4, and 5 GPa and ~300–2000 K. The resistivity of Fe-16wt%S-2wt%Si is 400 ± 50 μΩ·cm for 2–5 GPa for the complete liquid state. Using the Wiedemann–Franz Law, this gives an electronic thermal conductivity of 11 ± 1.5 W/m/K for 2–4 GPa at complete melting and an adiabatic heat flow of 55 ± 15 MW at the top of an early Fe-16wt%S-2wt%Si Vestan core. The 2 GPa boundary of the miscibility of Fe-16wt%S-2wt%Si is observed. The adiabatic heat flow through an Fe-16wt%S-2wt%Si core of variable size is discussed, as well as the resistivity of liquid Fe alloy at small planetary core conditions as a function of S and Si alloying composition. On the basis of previous studies on binary and ternary alloys of Fe with S and/or Si, we interpolate the separate effects of S and Si on the resistivity (and inversely on thermal conductivity and core adiabatic heat flow).

Funder

the Natural Sciences and Engineering Research Council of Canada

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3