Thermal Expansion of Alkaline-Earth Borates

Author:

Bubnova Rimma12,Yukhno Valentina1ORCID,Krzhizhanovskaya Maria2ORCID,Sizov Georgii12,Filatov Stanislav2

Affiliation:

1. Institute of Silicate Chemistry of the Russian Academy of Sciences (ISC RAS), Makarova Emb. 2, Saint Petersburg 199034, Russia

2. Institute of Earth Sciences, St. Petersburg State University, Universitetskaya Emb. 7/9, Saint Petersburg 199034, Russia

Abstract

The thermal expansion of four alkaline-earth borates, namely Ca3B2O6 (0D), CaB2O4 (1D), Sr3B14O24 (2D) and CaB4O7 (3D), has been studied by in situ high-temperature powder X-ray diffraction (HTXRD). Strong anisotropy of thermal expansion is observed for the structures of Ca3B2O6 (0D) and CaB2O4 (1D) built up from BO3 triangles only; these borates exhibit maximal expansion perpendicular to the BO3 plane, i.e., along the direction of weaker bonding in the crystal structure. Layered Sr3B14O24 (2D) and framework CaB4O7 (3D) built up from various B–O groups expand less anisotropically. The thermal properties of the studied compounds compared to the other alkaline-earth borates are summarized depending on the selected structural characteristics like anion dimensionality, residual charge per one polyhedron (BO3 BO4), cationic size and charge, and structural complexity. For the first time, these dependencies are established as an average for both types of polyhedra (triangle and tetrahedron) occurring in the same structure at the same time. The most common trends identified from these studies are as follows: (i) melting temperature decreases with the dimensionality of the borate polyanion, and more precisely, as the residual charge per one polyhedron (triangle or tetrahedron) decreases; (ii) volumetric expansion decreases while the degree of anisotropy increases weakly when the residual charge decreases; (iii) both trends (i) and (ii) are most steady within borates built by triangles only, while borates built by both triangles and tetrahedra show more scattered values.

Funder

Ministry of Science and Higher Education of the Russian Federation

Russian Science Foundation

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3