Tuning Fe2Ti Distribution to Enhance Extrinsic Magnetic Properties of SmFe12-Based Magnets

Author:

Wei Jinbo1,Xu Shuainan1,Xu Chengyuan1,Liu Xiaolian1,Pan Yu1,Wang Wei2,Wu Yue2,Chen Ping2,Liu Jun2,Zhao Lizhong1,Zhang Xuefeng1

Affiliation:

1. Institute of Advanced Magnetic Materials, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310012, China

2. Ningbo Shouzheng Magnet Co., Ltd., Ningbo 315000, China

Abstract

The ThMn12-type SmFe12-based rare-earth permanent magnet has attracted widespread attention due to its excellent intrinsic magnetic properties and high-temperature stability. However, the challenge in realizing continuous non-magnetic or weakly magnetic grain boundary phases equilibrated with the SmFe12 main phase hinders the enhancement in extrinsic magnetic properties of the SmFe12-based permanent magnet, especially for the coercivity. In this work, by controlling the cooling rate, the uniform distribution of paramagnetic Fe2Ti phases at grain boundaries is achieved in the SmFe12-based alloy ribbon, resulting in a high coercivity of 7.95 kOe. This improvement is attributed to the elimination of the impurity phase within the SmFe12 main phase and the magnetic isolation effect of the grain boundary phase composed of paramagnetic Fe2Ti, which is directly observed by transmission electron microscopy and further confirmed by micromagnetic simulation. Moreover, first-principles calculations show that the V element can dope into Fe2Ti and facilitate the transition of its paramagnetic state at room temperature. This study provides new insights into constructing weakly magnetic grain boundary phases for SmFe12-based permanent magnets, offering a novel approach to enhance coercivity.

Funder

National Science Fund for Distinguished Young Scholars

National Natural Science Foundation of China

Key R&D Projects of Zhejiang Province

National Key R&D Program of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3