How to Crystallize Glass with a Femtosecond Laser

Author:

Que Ruyue1,Lancry Matthieu1,Cavillon Maxime1ORCID,Poumellec Bertrand1ORCID

Affiliation:

1. Institut de Chimie Moléculaire et des Matériaux d’Orsay, Université Paris-Saclay, CNRS, 91405 Orsay, France

Abstract

The crystallization of glass through conventional thermal annealing in a furnace is a well-understood process. However, crystallization by femtosecond (fs) laser brings another dimension to this process. The pulsed nature of the irradiation necessitates a reevaluation of the parameters for optimal crystallization and an understanding of the particularities of using fs laser. This includes adjusting the laser pulse energy, the repetition rate, and the writing speed to either initiate nucleation or achieve substantial crystal growth. Therefore, a key challenge of this work is to establish reliable calculations for understanding the link between the size of the crystallized region and an ongoing transition (e.g., solid-to-solid, liquid-to-solid), while accounting for the aforementioned laser parameters. In this context, and based on previous work, a temperature distribution (in space and time) is simulated to model the thermal treatment at any point in the glass. By setting the condition that the temperatures are between the glass transition and melting temperature, the simulated crystallized region size can be compared with experimental observations. For that purpose, knowledge of the beam width at the focal point and of the absorbed beam energy fraction are critical inputs that were extracted from experiments found in the literature. After that, the management of the crystallization process and the width of the crystallization line can be achieved according to pulse energy, e.g., crystallite size, and also the effect of the scanning speed can be understood. Among the main conclusions to highlight, we disclose the laser conditions that determine the extent of the crystallized area and deduce that it is never of interest to increase the pulse energy too much as opposed to the repetition rate for the uniform crystallized line.

Funder

Agence Nationale de la Recherche (ANR), FLAG-IR Project

REFRACTEMP

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3