High-Temperature (Cu,C)Ba2Ca3Cu4Oy Superconducting Films with Large Irreversible Fields Grown on SrLaAlO4 Substrates by Pulsed Laser Deposition

Author:

Li Yugang1ORCID,Liu Zhiyong1,Zhu Ping1,He Jinyu1,Cai Chuanbing1

Affiliation:

1. Shanghai Key Laboratory of High Temperature Superconductors, Department of Physics, Shanghai University, Shanghai 200444, China

Abstract

(Cu,C)Ba2Ca3Cu4Oy is a nontoxic cuprate superconducting material with a superconducting transition temperature of about 116 K. Recently, it was found that bulk samples of this material synthesized under high pressure hold the highest irreversibility line among all the superconductors, which is very promising for its application in the liquid nitrogen temperature field. In this work, high-temperature (Cu,C)Ba2Ca3Cu4Oy superconducting films with large irreversible fields were prepared on SrLaAlO4(00l) substrates by pulsed laser deposition. The substrate temperature during deposition proved to be the most important parameter determining the morphology and critical temperature of the superconductors, with 680 °C considered to be the optimum temperature. X-ray diffraction (XRD) results showed that the (Cu,C)Ba2Ca3Cu4Oy films prepared under optimal conditions exhibited epitaxial growth with the a-axis perpendicular to the film surface and the b- and c-axes parallel to the substrate, with no evidence of any other orientation. In addition, resistivity measurements showed that the onset transition temperature (Tconset) was approximately 116 K, the zero-resistance critical temperature (Tc0) was around 53 K, and the irreversible field (Hirr) was about 9 T at 37 K for (Cu,C)Ba2Ca3Cu4Oy films under optimal temperature. This is the first example of the successful growth of superconducting (Cu,C)Ba2Ca3Cu4Oy films on SrLaAlO4(00l) substrates. This will facilitate high-performance applications of (Cu,C)Ba2Ca3Cu4Oy superconducting materials in the liquid nitrogen temperature field.

Funder

National Natural Science Foundation of China

National Key R&D Program of China

Shanghai Science and Technology Innovation Program

Strategic Priority Research Program of the Chinese Academy of Sciences

Publisher

MDPI AG

Reference26 articles.

1. High-temperature superconductors of the family (RE)Ba2Cu3O7-δ and their application;Bondarenko;Low Temp. Phys.,2017

2. Advance and challenge of secondary-generation high- temperature superconducting tapes for high field applications;Cai;Sci. Bull.,2019

3. Structural and Physical Properties of High-Entropy REBa2Cu3O7-δ Oxide Superconductors;Wang;J. Supercond. Novel Magn.,2021

4. Evolvement and Prospect of Practical Superconducting Materials;Cai;Mater. China,2011

5. Collapse of irreversible field of superconducting Bi2Sr2Ca2Cu3O10+δ/Ag tapes with columnar defects;Li;Appl. Phys. Lett.,1997

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3