Thermal Characterization of [C2Im][NO3] and Multivalent Nitrate Salts Mixtures

Author:

Vallet Pablo1,Parajó Juan José1ORCID,Santiago-Alonso Antía1,Villanueva María1,Varela Luis Miguel1,Salgado Josefa1ORCID

Affiliation:

1. NAFOMAT Group, Departamentos de Física Aplicada y Física de Partículas, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain

Abstract

Due to their intrinsic properties, the current applicability of ionic liquids is enormous. In particular, their use in electrochemistry is beyond question. Numerous studies on these compounds and their mixtures, especially with lithium salts, focus on their use as electrolytes for batteries and other energy storage devices. This includes thermal energy storage devices, where 4th generation ionic liquids and their derivatives show a huge potential. Nevertheless, considering the uneven availability of the raw materials, such as lithium, research has extended to mixtures of these compounds with other salts of different metals that are more abundant and widely distributed, such as magnesium or aluminum. This work presents a comprehensive thermal characterization, using differential scanning calorimetry and thermogravimetry, of the protic ionic liquid ethylimidazolium nitrate and its mixture with magnesium and aluminum nitrate salts at different concentrations. Additionally, a comparison between these results and previous studies of mixtures of this ionic liquid with lithium nitrate, as well as mixtures of the protic ionic liquid EAN with the same metal salts, was also performed. The results indicated that the salt addition tends to broaden and reduce crystallization and melting peaks, while the glass transition becomes more visible and shifts to higher temperatures with increasing salt concentration. This is due to the disorder generated by the rearrangement of ions in the polar domains, which erodes the hydrogen bond network of the protic ionic liquid. Nevertheless, the thermal stability of the blended samples does not change significantly compared to the bulk ionic liquid.

Funder

Spanish Ministry of Economy and Competitiveness and FEDER Program

Network Ionic Systems for energy sustainability

Xunta de Galicia through GRC

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3