Effects of Friction Stir Processing on the Microstructure and Mechanical Properties of an Ultralight Mg-Li Alloy

Author:

Song Wenjie12ORCID,Wu Zongyu1,He Shuai1,Liu Jie1,Yang Guang1,Liu Yanhui1,Jin Huijin1,He Yupeng3,Heng Zhonghao4

Affiliation:

1. College of Mechanical and Electrical Engineering, Shaanxi University of Science and Technology, 7 Xuefu Road, Weiyang District, Xi’an 710021, China

2. Department of Materials Science, Fudan University, Shanghai 200438, China

3. School of Aeronautics, Northwestern Polytechnical University, Xi’an 710072, China

4. School of Mechanical Engineering, Qinghai University, Xining 810016, China

Abstract

Magnesium–lithium alloys are arguably the lightest metal structural materials but have low strength. In order to increase strength, friction stir processing (FSP) is applied to a hot-rolled Mg-10Li-3Al-3Zn (LA103Z) sheet to study the effects on the microstructure and mechanical properties. In this study, the strengthening mechanisms of various FSP regions of an Mg-Li alloy were clarified by a combination of numerical simulation and experimental method. Based on ANSYS APDL, a finite element model with a moving heat source is established. Rotational speeds of 800, 1000, and 1200 rpm and traverse speeds of 100, 110, and 120 mm/min were used in this research. The simulation results confirm that the influence of the rotation speed on the alloy temperature field is greater than that of the travel speed. The temperature of the processing area increases with an increase in rotation speed and decreases with an increase in travel speed. Then, hot-rolled LA103Z alloy plates are processed by FSP. The correspondence between the numerical simulation and experiment was verified by infrared thermography. The results indicate that FSP decreases the grain size significantly for the dynamic recrystallization and dramatic mechanical crushing of the stirring pin. The α-Mg and AlLi are solid soluted in the β-Li matrix. The tensile strength of the processing zone is 260.67 MPa (1000 rpm, 110 mm/min) versus the 170.47 MPa of the base metal. The SZ has the highest microhardness of 77.8 HV (800 rpm, 120 mm/min) and decreases gradually to the BM. The severe deformation, recrystallization, and solid solution of the α-Mg are important factors contributing to the improved mechanical properties.

Funder

National Natural Science Foundation of China

Shaanxi Province Key Project of Research and Development Plan, China

Natural Science Basic Research Program of Shaanxi

Doctoral Scientific Research Starting Foundation of the Shaanxi University of Science and Technology, China

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3