Modeling 0.3 THz Coaxial Single-Mode Phase Shifter Designs in Liquid Crystals with Constitutive Loss Quantifications

Author:

Li Jinfeng123ORCID,Li Haorong1

Affiliation:

1. Beijing Key Laboratory of Millimeter Wave and Terahertz Technology, School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing 100081, China

2. Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China

3. Department of Electrical and Electronic Engineering, Imperial College London, London SW7 2AZ, UK

Abstract

This work proposes and examines the feasibility of next-generation 0.3 THz phase shifters realized with liquid crystals (LCs) as tunable dielectrics coaxially filled in the transmission line. The classic coaxial transmission line topology is robust to electromagnetic interference and environmental noise, but is susceptible to higher-order modes from microwave to millimeter-wave towards terahertz (THz) wavelength ranges, which impedes the low-insertion-loss phase-shifting functionality. This work thus focuses primarily on the suppression of the risky higher-order modes, particularly the first emerging TE11 mode impacting the dielectric loss and metal losses in diverse manners. Based on impedance matching baselines at diverse tuning states of LCs, this work analytically derives and models two design geometries; i.e., design 1 for the coaxial geometry matched at the isotopically referenced state of LC for 50 Ω, and design 2 for geometry matched at the saturated bias of LC with the maximally achievable permittivity. The Figure-of-Merit for design 1 and design 2 reports as 35.15°/dB and 34.73°/dB per unit length, respectively. We also propose a constitutive power analysis method for understanding the loss consumed by constitutive materials. Notably, for the 0.3 THz design, the isotropic LC state results in an LC dielectric loss of 63.5% of the total input power (assuming 100%), which becomes the primary constraint on achieving low-loss THz operations. The substantial difference in the LC dielectric loss between the isotropic LC state and saturated bias state for the 0.3 THz design (35.76% variation) as compared to that of our past 60 GHz design (13.5% variation) indicates that the LC dielectric loss’s escalating role is further enhanced with the rise in frequency, which is more pronounced than the conductor losses. Overall, the results from analytical and finite-element optimization in this work shape the direction and feasibility of the unconventional THz coaxial phase shifting technology with LCs, actioned as continuously tunable dielectrics.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3