High-Temperature Oxidation Behavior of FeCoCrNi+(Cu/Al)-Based High-Entropy Alloys in Humid Air

Author:

White Emma Marie Hamilton1,Bürckner Mary-Lee1ORCID,Schlereth Clara1,Bik Maciej2ORCID,Galetz Mathias Christian1

Affiliation:

1. DECHEMA Research Institute, Theodor-Heuss-Allee 25, 60486 Frankfurt am Main, Germany

2. Faculty of Materials Science and Ceramics, AGH University of Krakow, Al. Mickiewicza 30 B8 3.12, 30-059 Krakow, Poland

Abstract

Previous studies showed some transition metal high-entropy alloy (HEA) compositions can have good oxidation resistance in air up to 800 °C. Four equiatomic HEAs have been developed based on FeCoCrNi with additions of Mn, Cu, Al or Al+Cu. The oxidation behavior of these HEAs was compared in humid (10 vol.% H2O) air at 800 °C for 100–500 h to investigate the influence of water vapor on the oxidation mechanisms. The Cu- and Al-containing alloys exhibited improved oxidation resistance over the Mn composition. For the Cu-containing alloy, a local attack of the Cu-rich phase was observed, which formed an Fe/Ni/Co/Cr spinel that was surrounded by Cr2O3. This oxide was thicker for the humid air atmosphere when compared to dry air, and the transition of the Cu oxide to the spinel was accelerated. The Al-containing HEA formed a thin Al2O3 scale with humidity suppressing AlN formation and forming a smoother oxide layer. The Al+Cu composition had the highest overall oxidation resistance (minimal local attack, no nitridation) and also showed a smooth oxide scale topography under humid air oxidation as opposed to a plate-like, rougher scale under dry air.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3