Microstructural Evolution and Strengthening of Dual-Phase Stainless Steel S32750 during Heavily Cold Drawing

Author:

Gao Hong1,An Zhixun2,Yao Liang3,Wang Jianyong3,Zhai Lili1,Ding Binhua3,Peng Jin1,Zhou Lichu2,Cao Xia4

Affiliation:

1. Jiangsu Wujin Stainless Steel Pipe Group Co., Ltd., Changzhou 213000, China

2. Jiangsu Key Laboratory of Advanced Metallic Materials, Southeast University, Nanjing 211189, China

3. Yongxing Special Materials Technology Co., Ltd., Huzhou 313000, China

4. Changzhou Institute of Technology, Changzhou 213000, China

Abstract

S32750 dual-phase stainless steel (DSS) wires were prepared by cold drawing with a strain of ε = 0~3.6. The mechanical behavior and microstructural evolution of these DSS wires at different strains were investigated. Specifically, the yield strength and ultimate tensile strength of a S32750 DSS wire at a strain of ε = 3.6 reached 1771 MPa and 1952 MPa, respectively. The microstructure of the wire was transformed into a heterogeneous microstructure, which consisted of ferrite fiber grains and a nanofibrous grain structure consisting of austenite and strain-induced martensite nanofiber grains. A sub-grain structure was observed inside the ferrite fiber. The austenitic phase followed the evolutionary steps of stacking faults, twinning, ε-martensite, α-martensite, and, finally, austenite, before transitioning into a nanofibrous grain structure. This nanofibrous grain structure significantly contributed to the strength compared with the relatively coarse ferrite phase.

Funder

Jiangsu Key Laboratory of Advanced Metallic Materials, Southeast University

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3