Manufacturing of TiO2, Al2O3 and Y2O3 Ceramic Nanotubes for Application as Electrodes for Printable Electrochemical Sensors

Author:

Trandabat Alexandru Florentin1,Ciobanu Romeo Cristian1,Schreiner Oliver Daniel1,Aradoaei Mihaela1,Aradoaei Sebastian Teodor1

Affiliation:

1. Department of Electrical Measurements and Materials, Gheorghe Asachi Technical University, 700050 Iasi, Romania

Abstract

This paper describes the process to obtain ceramic nanotubes from titanium dioxide, alumina and yttrium oxide by a feasible, replicable and reliable technology, including three stages, starting from an electrospinning process of poly(methyl methacrylate) solutions. A minimum diameter of 0.3 μm was considered optimal for PMMA nanofibers in order to maintain the structural stability of covered fibers, which, after ceramic film deposition, leads to a fiber diameter of 0.5–0.6 μm. After a chemical and physical analysis of the stages of obtaining ceramic nanotubes, in all cases, uniform deposition of a ceramic film on PMMA fibers and, finally, a uniform structure of ceramic nanotubes were noted. The technological purpose was to use such nanotubes as ingredients in screen-printing inks for electrochemical sensors, because no study directly targeted the subject of ceramic nanotube applications for printed electronics to date. The printing technology was analyzed in terms of the ink deposition process, printed electrode roughness vs. type of ceramic nanotubes, derived inks, thermal curing of the electrodes and the conductivity of electrodes on different support (rigid and flexible) at different curing temperatures. The experimental inks containing ceramic nanotubes can be considered feasible for printed electronics, because they offer fast curing at low temperatures, reasonable conductivity vs. electrode length, good printability on both ceramic or plastic (flexible) supports and good adhesion to surface after curing.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3