The Influence of Substitutional Defects of Transition Metal Elements on the Stability and Thermal Properties of Al at Finite Temperatures: A First-Principles Study

Author:

Ye Tuo12,Lin Lan12,Ruan Zixiong12,Fan Touwen123,Wu Yuanzhi12,Chen Dongchu3

Affiliation:

1. Research Institute of Automobile Parts Technology, Hunan Institute of Technology, Hengyang 421002, China

2. College of Science, Hunan Institute of Technology, Hengyang 421002, China

3. School of Material Science and Hydrogen Energy Engineering, Foshan University, Foshan 528001, China

Abstract

Based on first-principles calculations, the effects of substitutional defects of the 3d–5d transition metal elements TMAl on the stability and thermal conductivity of the aluminum matrix were investigated. The results show that with an increase in the atomic number of TM, the defect-forming energy Ef of TMAl exhibits a periodic change feature, which depends on the valence electron configuration of the TM elements. The thermodynamic property parameters calculated with the Debye theory show that the addition of TM atoms does not change the stability of an Al system and can effectively reduce the thermal expansion coefficient of the material. But the equilibrium lattice constant a0 of Al-TMAl supercells changes very little. As the temperature increases, the relaxation time τ decreases, and both the electronic thermal conductivity κe and the total thermal conductivity κ decrease at the temperature range of 100–200 K, followed by a small increase or decrease. Because the lattice thermal conductivity κl is very small in the whole temperature range, the changes in electronic thermal conductivity and total thermal conductivity are basically the same. Moreover, when 1 at.% TM was added at both 300 K and 600 K, it was found that the influence of TM solute atoms on the thermal conductivity κ of Al was much greater than that of the second-phase particles. For solid solution atoms, Pd and Pt atoms have the greatest influence on the thermal conductivity of pure Al. This work is helpful for designing high-performance, heat-resistant Al-based alloys.

Funder

Basic and Applied Basic Research Fund of Guangdong Province

Natural Science Foundation of China

Scientific Research Project of Hunan Institute of Technology

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3