Surface Enhancement of Titanium-Based Coatings on Commercial Hard Steel Cutting Tools

Author:

Dang Minh Nhat12ORCID,Singh Surinder1ORCID,King Hannah J.1ORCID,Navarro-Devia John H.3ORCID,Le Hoang4,Pattison Thomas G.1,Hocking Rosalie K.1,Wade Scott A.1ORCID,Stephens Guy3,Papageorgiou Angelo3,Manzano Armando2,Wang James1

Affiliation:

1. The Australian Research Council (ARC) Training Centre in Surface Engineering for Advanced Materials (SEAM), School of Engineering, Swinburne University of Technology, P.O. Box 218, Hawthorn, VIC 3122, Australia

2. ANCA Pty Ltd., 25 Gatwick Rd, Bayswater North, VIC 3153, Australia

3. Sutton Tools, 378 Settlement Rd, Thomastown, VIC 3074, Australia

4. The Electron Microscopy and Materials Analysis Research Group, School of Computing and Engineering, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, UK

Abstract

This study investigates the mechanical properties, surface integrity, and chemical configuration of PVD-coated high-speed steel (HSS) cutting tools, with a particular focus on titanium nitride (TiN) and titanium aluminium nitride (TiAlN) coatings. A range of characterisation methodologies were employed to examine the impact of pre-coating surface conditions on the resulting coatings. This impact includes the effects of gas bubble production and unequal distribution of elements, which are two unwanted occurrences. Notwithstanding these difficulties, coatings applied on surfaces that were highly polished exhibited more consistency in their mechanical and elemental characteristics, with a thickness ranging from 2 to 4 µm. The study of mechanical characteristics confirms a significant increase in hardness, from an initial value of roughly 1000 HV0.5 for untreated tools to 1300 HV0.5 for tools with physical vapour deposition (PVD) coatings. Although PVD coatings produced on an industrial scale might not exceed the quality of coatings manufactured in a laboratory, they do offer substantial enhancements in terms of hardness. This study highlights the significant importance of thorough surface preparation in achieving enhanced coating performance, hence contributing to the efforts to prolong the lifespan of tools and enhance their performance even under demanding operational circumstances.

Funder

Australian Government

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3