Numerical Simulation of Infiltration Behavior of ZTAP/HCCI Composites

Author:

He Xu12,Lu Yu12,Li Xiangming12,Zhou Mojin12,Jiang Yehua12

Affiliation:

1. Faculty of Material Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China

2. State Local Joint Engineering Laboratory of Advanced Solidification Forming and Equipment Technology of Metal, Kunming University of Science and Technology, Kunming 650093, China

Abstract

According to statistics, 80% of failed components in mechanical equipment are caused by various types of wear and corrosion. Therefore, in order to reduce material loss, research on wear-resistant materials is urgent. In order to solve the difficulty of directly observing the infiltration process of liquid metal in preform, this study first conducted infiltration experiments on liquid metal in ZTA ceramic particle preform at different pouring temperatures, and then used Fluent software to numerically simulate the infiltration behavior of liquid metal in preform. By changing parameters such as pouring temperature and infiltration pressure, the influence of these parameters on the penetration depth of liquid metal in prefabricated structures was determined. The research results indicate that when the pouring temperatures are 1420 °C, 1570 °C, 1720 °C, and 1870 °C, the infiltration depths are 4 mm, 8 mm, 11 mm, and 15 mm; when the casting infiltration pressures are 7620 Pa, 15,240 Pa, 22,860 Pa, and 30,480 Pa, the infiltration depths are 10 mm, 16 mm, 20 mm, and 22 mm. The simulation results of the pouring temperature on the infiltration depth are basically consistent with the experimental results.

Funder

Yunnan Major Scientific and Technological Projects

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3