Investigation on Friction Stir Welding Parameters: Mechanical Properties, Correlations and Corrosion Behaviors of Aluminum/Titanium Dissimilar Welds

Author:

Kar Amlan12ORCID,Mathiyalagan Sribalaji1,Malopheyev Sergey3ORCID,Kaibyshev Rustam3,Suwas Satyam1,Kailas Satish V.1

Affiliation:

1. Indian Institute of Science, Bengaluru 560012, India

2. Arbegast Materials Processing and Joining Laboratory (AMP), South Dakota School of Mines and Technology, Rapid City, SD 57701, USA

3. Laboratory of Mechanical Properties of Nanostructured and Heat-Resistant Materials, Belgorod State National Research University, Belgorod 308034, Russia

Abstract

In industrial applications, welding of dissimilar metals such as aluminum (Al) and titanium (Ti) is a prerequisite for the development of hybrid components with improved mechanical and corrosion properties. However, dissimilar welding of the Al/Ti system is highly challenging due to differences in the physical and thermal properties of the two materials. In the present investigation, an attempt has been made to fabricate a dissimilar friction stir weld (FSW) of commercially pure Al and Ti and to elucidate the mechanism associated with superior joint formation. The process parameters, such as tool rotation speed, traverse speed and tool offset position have been optimized using Taguchi’s optimization technique. A detailed investigation of the weld with optimum process parameters has been carried out to reveal the mechanism of joint formation. The superior mechanical properties (24% higher ultimate tensile strength and 10% higher ductility than that of base Al) of the weld are attributed to the fabrication of a defect-free joint, formation of intercalated particles and an Al/Ti interlocking interface, homogeneous distribution of fine second-phase (Ti and/or intermetallics) particles in the weld nugget, reduction in the evolution of brittle Al3Ti intermetallic compounds (IMCs) and recrystallization and grain refinement of Al in the weld nugget. The potentio-dynamic polarization test indicated that the optimized Al/Ti weld has ~47% higher corrosion resistance than Al; it had a very mild corrosion attack due to the homogeneous dispersion of fine particles. The method and mechanism could have an immense influence on any dissimilar weld and metal matrix composites, improving their mechanical properties and corrosion resistance.

Funder

Department of Science & Technology

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3