Preparation, Characterization, and High-Temperature Anti-Seizing Application of CrAlN-Based Gradient Multilayer Coatings

Author:

Tang Chunmei1ORCID,Li Dingjun1,Yuan Xiaohu1,Wang Wei1,Guo Xianping1,Fang Yu1,Gong Xiufang1,Li Quande1

Affiliation:

1. State Key Laboratory of Clean and Efficient Turbomachinery Power Equipment, Dongfang Turbine Co., Ltd., Deyang 618000, China

Abstract

High-temperature fasteners are metal parts of gas turbines and steam turbines, which work at high temperatures and under stress for a long time. However, the frequent seizures of fasteners bring great trouble to the normal maintenance of power plants. In this paper, three kinds of dense and controllable CrAlN-based gradient multilayer coatings were prepared on the samples and screws by arc ion plating (AIP) technology. The morphology, composition, structure, nano hardness, adhesion, residual stress, and room temperature tribological performance of the coating were investigated. To evaluate the high-temperature, anti-seizing performance, coated screws were heated to 700 °C for 140 h with a torque of 20 N·m. The results indicate that the CrN/CrAlN multilayer coating shows better comprehensive properties. The characterization of coated screws proved that the coating structures obtained on the screws were similar to the flat samples. However, the as-prepared coating on the screws showed different thickness variation rules, which was related to the clamping method, deposition distance, and screw shape. After a simulation service, the thread of the screw remained intact with similar structure and thinner thickness. The above results indicate that the high-temperature seize prevention of fasteners can be successfully achieved by preparing a CrAlN-based multilayer coating, which is suitable for fasteners with service temperatures below 700 °C.

Funder

Sichuan Science and Technology Program

National Science and Technology Major Project

Publisher

MDPI AG

Reference24 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3