Affiliation:
1. Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyixi Road, Xi’an 710072, China
Abstract
The inherent nonpolarity of tetragonal lysozyme crystals excludes a ferroelectricity response. Herein, we present a demonstration of achieving measurable ferroelectricity in tetragonal lysozyme crystals through C60 doping. Ferroelectric characterizations revealed that C60-doped tetragonal lysozyme crystals exhibited typical characteristic ferroelectric hysteresis loops. Crystallographic structural analysis suggested that C60 doping may induce a reduction in the overall symmetry of tetragonal Lys@C60, leading to the observed ferroelectricity response. Moreover, the introduction of C60 facilitates efficient electron transport inside the crystal and influences the polarization of Lys@C60, further contributing to the observed ferroelectricity response. This work verifies that C60 doping can serve as a simple strategy to bestow novel ferroelectric properties to non-ferroelectric lysozyme crystals, potentially rendering them suitable for biocompatible and biodegradable application in implantable and wearable bioelectronics.
Funder
National Natural Science Foundation of China
Science and Technology Program of Ali Region, Tibet
Key R&D Project in Shaanxi Province
Fundamental Research Funds for the Central Universities