Machine Learning-Based Predictions of Power Factor for Half-Heusler Phases

Author:

Bilińska Kaja1,Winiarski Maciej J.1

Affiliation:

1. Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2, 50-370 Wrocław, Poland

Abstract

A support vector regression model for predictions of the thermoelectric power factor of half-Heusler phases was implemented based on elemental features of ions. The training subset was composed of 53 hH phases with 18 valence electrons. The target values were calculated within the density functional theory and Boltzmann equation. The best predictors out of over 2000 combinations regarded for the p-type power factor at room temperature are: electronegativity, the first ionization energy, and the valence electron count of constituent ions. The final results of support vector regression for 70 hH phases are compared with data available in the literature, revealing good ability to determine favorable thermoelectric materials, i.e., VRhGe, TaRhGe, VRuSb, NbRuAs, NbRuBi, LuNiAs, LuNiBi, TaFeBi, YNiAs, YNiBi, TaRuSb and NbFeSb. The results and discussion presented in this work should encourage further fusion of ab initio investigations and machine learning support, in which the elemental features of ions may be a sufficient input for reasonable predictions of intermetallics with promising thermoelectric performance.

Funder

Wroclaw Center for Networking and Supercomputing

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3