Crystal Growth, Photoluminescence and Radioluminescence Properties of Ce3+-Doped Ba3Y(PO4)3 Crystal

Author:

Zou Zhenggang12,Weng Jiaolin3,Liu Chun1,Lin Yiyang1,Zhu Jiawei1,Sun Yijian12ORCID,Huang Jianhui4,Gong Guoliang124,Wen Herui12

Affiliation:

1. Jiangxi Provincial Key Laboratory of Functional Crystalline Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China

2. National Rare Earth Functional Material Innovation Center, Ganzhou 341000, China

3. College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350108, China

4. College of Rare Earths, Jiangxi University of Science and Technology, Ganzhou 341000, China

Abstract

Inorganic scintillation crystals have been widely used in applications of high-energy physics, nuclear medical imaging, industrial nondestructive inspection, etc. In this work, a single crystal Ba3Y(PO4)3 (BYP) with 1.0 at% Ce3+-doping concentration was first grown by the Czochralski method, and the electronic structure was calculated using first principles based on density functional theory. In addition, a series of Ce3+-doped BYP phosphors were synthesized, and the fluorescence emission under UV excitation was measured through low-temperature spectroscopy, containing double-peaked emission from 5d–4f transition and self-trapped exciton recombination. A comparison of the UV and X-ray-excited fluorescence spectra reveals the existence of oxygen vacancies as well as F+ centers in the crystal. The air annealing of the crystal effectively reduces the thermoluminescence defects but reduces the emission intensity under UV or X-ray excitation. The BYP:Ce crystal shows a fast decay lifetime of 15.5 ns, and the fast component is as short as 8 ns. The results show that the Ce3+-doped BYP crystal has potential as a kind of scintillator with fast decay properties.

Funder

National Natural Science Foundation of China

Jiangxi Provincial Key Research and Development Project of China

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3