Improving the Quality of Spontaneously Growing HviGH11 Crystals by Increasing the Viscosity Using Polyethylene Glycols

Author:

Nam Ki Hyun1ORCID

Affiliation:

1. College of General Education, Kookmin University, Seoul 02707, Republic of Korea

Abstract

Proteins can form crystals spontaneously without crystallization experiments. These crystals can be used to determine three-dimensional structures. However, when X-ray diffraction is poor, crystal optimization is required to obtain a high-resolution crystal structure. Endo-1,4-β-xylanase from the fungus Hypocrea virens (HviGH11) spontaneously formed microcrystals after affinity purification and concentration; however, most HviGH11 microcrystals showed poor diffraction in the synchrotron X-ray and X-ray free-electron laser, so a complete three-dimensional structure could not be obtained. This study presents a method to improve the crystal quality of spontaneously grown HviGH11 microcrystals. The crystallization screening results revealed that temperature, pH, and salt were not crucial factors in increasing the solubility or preventing the spontaneous crystal growth of HviGH11. Conversely, the addition of polyethylene glycols (PEGs) as a precipitant facilitated the growth of larger HviGH11 crystals. The improved large HviGH11 crystal showed a diffraction of up to 1.95 Å when exposed to synchrotron X-rays, providing a complete three-dimensional structural dataset. Based on the nucleation rate equation, it was suggested that PEG increases the viscosity of the protein solution rather than promoting nucleation. This increase in viscosity reduced nucleation and facilitated the growth of larger HviGH11 crystals. These results provide valuable insights for future experiments aimed at increasing the size of spontaneously grown crystals.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3