First-Principles Study of Ti-Doping Effects on Hard Magnetic Properties of RFe11Ti Magnets

Author:

Xu Chengyuan1,Wen Lin1ORCID,Pan Anjian1,Zhao Lizhong1,Liu Yuansen1,Liao Xuefeng2ORCID,Pan Yu1,Zhang Xuefeng1

Affiliation:

1. Institute of Advanced Magnetic Materials, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310012, China

2. Guangdong Provincial Key Laboratory of Rare Earth Development and Application, Institute of Resources Utilization and Rare Earth Development, Guangdong Academy of Sciences, Guangzhou 510650, China

Abstract

Due to the rare earth supply shortage, ThMn12-type RFe12-based (R is the rare earth element) magnets with lean rare earth content are gaining more concern. Most ThMn12-type RFe12 structures are thermodynamically metastable and require doping of the stabilizing element Ti. However, the Ti-doping effects on the hard magnetic properties of RFe11Ti have not been thoroughly investigated. Herein, based on density functional theory calculations, we report the Ti-doping effects on the phase stability, intrinsic hard magnetic properties and electronic structures of RFe11Ti (R = La, Ce, Pr, Nd, Sm, Y, Zr). Our results indicate that Ti-doping not only increases their phase stability, but also enhances the magnetic hardness of ground-state RFe12 phases. Particularly, it leads to the transition of CeFe11Ti and PrFe11Ti from easy-plane to easy-axis anisotropy. Charge density distributions demonstrate that Ti-doping breaks the original symmetry of the R-site crystal field, which alters the magnetic anisotropy of RFe11Ti. Projected densities of states reveal that the addition of Ti results in the shift of occupied and unoccupied f-electron energy levels of rare earth elements, affecting their magnetic exchange. This study provides an insight into regulating the hard magnetic properties of RFe12-based magnets by Ti-doping.

Funder

National Science Fund for Distinguished Young Scholars

National Natural Science Foundation of China

Key R&D Projects of Zhejiang Province

National Key R&D Program of China

Basic and Applied Basic Research Foundation of Guangdong Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3