Construction of a Predictive Model for Dynamic and Static Recrystallization Kinetics of Cast TC21 Titanium Alloy

Author:

Li Ziliang12,Chai Yunpeng3ORCID,Qin Ling4ORCID,Zhu Yanchun3,Niu Yong3,Fan Jiaxin3,Yue Zhenwei3

Affiliation:

1. School of Electronic Information Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China

2. College of Mechanical and Vehicle Engineering, Taiyuan University of Technology, Taiyuan 030024, China

3. School of Mechanical Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China

4. Center of Innovation for Flow Through Porous Media, Department of Petroleum Engineering, University of Wyoming, Laramie, WY 82071, USA

Abstract

In this study, hot compression experiments were conducted on cast TC21 titanium alloy using a Gleeble-1500D thermal simulation compression tester, and the hot-compressed specimens were heat-treated. The data obtained after analyzing the thermal compression of cast TC21 titanium alloy were analyzed to construct a thermal machining diagram with a strain of 0.8 and to optimize the machining window. This study investigated the microstructure of the alloy after hot pressing experiments and heat treatment, applying the study of the microstructure evolution law of cast TC21 titanium alloy. The analysis of the tissue evolution law established the dynamic and static recrystallization volume fraction as a function of heat deformation parameters. The results show that the optimal processing window for cast TC21 titanium alloy is a deformation temperature in the range of 1373 K–1423 K and a strain rate of 0.1 s−1. The increase in deformation volume and deformation temperature both favor recrystallization and make the recrystallization volume fraction increase, but the increase in strain rate will inhibit the increase in the recrystallization degree to some extent. The dynamic and static recrystallization equations for the cast TC21 titanium alloy at different temperatures were constructed. The experimental measurements of recrystallization volume fraction are in good agreement with the predicted values.

Funder

Technological Innovation Talent Team Special Plan of Shanxi Province

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3