Mechanical Analysis of Functionally Graded Multilayered Two-Dimensional Decagonal Piezoelectric Quasicrystal Laminates with Imperfect Interfaces

Author:

Wang Yuxuan1,Liu Chao2,Zhang Liangliang1,Pan Ernian3,Gao Yang1

Affiliation:

1. College of Science, China Agricultural University, Beijing 100083, China

2. CATARC (Tianjin) Automotive Engineering Research Institute Co., Ltd., Tianjin 300399, China

3. Department of Civil Engineering, Disaster Prevention & Water Environment Research Center, Institute of Pioneer Semiconductor Innovation, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan

Abstract

Quasicrystals have a wide range of applications due to their unique multi-field coupling effects and distinctive physical and mechanical characteristics. In this paper, the static and dynamic problems of imperfectly bonded, multilayered, functionally graded, two-dimensional decagonal piezoelectric quasicrystal laminates under mixed boundary conditions are investigated. The state equations in a concise and compact matrix form can be expressed by using differential quadrature regional discrete point expansions in any layer of the laminate. This allows for the representation of displacement, stress, electric potential, and electric displacement components. Then, different imperfect interface conditions are introduced to characterize specific structural and electric contact properties at the bounding interfaces, which are further converted to the interface propagator matrix. Numerical examples are carried out to investigate the impact of varying interface compliances, load types, and functional gradient factors on the static bending and vibration phenomena of QC laminates. These results can be used as references to validate existing or future numerical work on QC laminates and could further guide the design of related QC laminate structures.

Funder

National Natural Science Foundation of China

China Agricultural University Education Foundation

Yushan Fellow Program

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3