An Analysis of Protein Crystals Grown under Microgravity Conditions

Author:

Jackson Keegan1,Hoff Rebecca1,Wright Hannah1,Wilkinson Ashley1,Brewer Frances1,Williams Amari1,Whiteside Ben1,Macbeth Mark R.1,Wilson Anne M.1ORCID

Affiliation:

1. Department of Chemistry and Biochemistry, Butler University, 4600 Sunset Avenue, Indianapolis, IN 46208, USA

Abstract

Microgravity has been shown to be an excellent tool for protein crystal formation. A retrospective analysis of all publicly available crystallization data, including many that have not yet been published, clearly demonstrates the value of the microgravity environment for producing superior protein crystals. The parameters in the database (the Butler Microgravity Protein Crystal Database, BμCDB) that were evaluated pertain to both crystal morphology and diffraction quality. Success metrics were determined as improvements in size, definition, uniformity, mosaicity, diffraction quality, resolution limits, and B factor. The proteins in the databases were evaluated by molecular weight, protein type, the number of subunits, space group, and Mattew’s Coefficient. Compared to ground experiments, crystals grown in a microgravity environment continue to show improvement across all metrics evaluated. General trends as well as numerical differences are included in the assessment of the BμCDB. The microgravity environment improves crystal formation across a spectrum of metrics and the datasets utilized for this investigation are excellent tools for this evaluation.

Funder

Aerospace Corporation

Butler University

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3