The Transition from Type-I to Type-II SiC/GaN Heterostructure with External Strain

Author:

Zhang Li1,Sun Haiyang2ORCID,Zheng Ruxin3,Pan Hao4,Mu Weihua5ORCID,Wang Li6

Affiliation:

1. School of Electrical Engineering, Anhui Technical College of Mechanical and Electrical Engineering, Wuhu 241000, China

2. School of Information Science and Technology, Nanjing Forestry University, Nanjing 210037, China

3. School of Mechanical Engineering, Southeast University, Nanjing 211189, China

4. Automotive & Transportation Engineering, Shenzhen Polytechnic, Shenzhen 518055, China

5. Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China

6. Dean’s Office, Xuancheng Vocational & Technical College, Xuancheng 242000, China

Abstract

Two-dimensional materials are widely used as a new generation of functional materials for photovoltaic, photocatalyst, and nano-power devices. Strain engineering is a popular method to tune the properties of two-dimensional materials so that performances can be improved or more applications can be obtained. In this work, a two-dimensional heterostructure is constructed from SiC and GaN monolayers. Using first-principle calculations, the SiC/GaN heterostructure is stacked by a van der Waals interaction, acting as a semiconductor with an indirect bandgap of 3.331 eV. Importantly, the SiC/GaN heterostructure possesses a type-II band structure. Thus, the photogenerated electron and hole can be separated in the heterostructure as a potential photocatalyst for water splitting. Then, the external biaxial strain can decrease the bandgap of the SiC/GaN heterostructure. From pressure to tension, the SiC/GaN heterostructure realizes a transformation from a type-II to a type-I semiconductor. The strained SiC/GaN heterostructure also shows suitable band alignment to promote the redox of water splitting at pH 0 and 7. Moreover, the enhanced light-absorption properties further explain the SiC/GaN heterostructure’s potential as a photocatalyst and for nanoelectronics.

Funder

Key Natural Science Research Projects of Anhui Provincial Higher Education Institutions

Shenzhen Polytechnic Research Fund

Scientific Research Revitalization Plan Projects of Higher Education Institutions

Wenzhou Institute, University of Chinese Academy of Sciences

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3