Exploring the Premelting Transition through Molecular Simulations Powered by Neural Network Potentials

Author:

Zeng Limin1,Gao Ang1

Affiliation:

1. School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China

Abstract

The premelting layer on crystal surfaces significantly affects the stability, surface reactivity, and phase transition behaviors of crystals. Traditional methods for studying this layer—experimental techniques, classical simulations, and even first-principle simulations—have significant limitations in accuracy and scalability. To overcome these challenges, we employ molecular dynamic simulations based on neural network potentials to investigate the structural and dynamic behavior of the premelting layer on ice. This approach matches the accuracy of first-principle calculations while greatly improving computational efficiency, allowing us to simulate the ice–vapor interface on a much larger scale. In this study, we conducted a one-nanosecond simulation of the ice–vapor interface involving 1024 water molecules. This significantly exceeds the time and size scales of previous first-principle studies. Our simulation results indicate complete surface melting. Furthermore, our simulation results reveal dynamic heterogeneity within the premelting layer, with molecules segregated into clusters of low and high mobility.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3