A Visual Representation for Accurate Local Basis Set Construction and Optimization: A Case Study of SrTiO3 with Hybrid DFT Functionals

Author:

Zvejnieks Guntars1ORCID,Rusevich Leonid L.1ORCID,Heifets Eugene2ORCID,Kotomin Eugene1ORCID,Gryaznov Denis1ORCID

Affiliation:

1. Institute of Solid State Physics, University of Latvia, 8 Kengaraga Str., LV-1063 Riga, Latvia

2. Independent Researcher, West Hollywood, CA 90046, USA

Abstract

The linear combination of atomic orbitals (LCAO) method is advantageous for calculating important bulk and surface properties of crystals and defects in/on them. Compared to plane wave calculations and contrary to common assumptions, hybrid density functional theory (DFT) functionals are actually less costly and easier to implement in LCAO codes. However, choosing the proper basis set (BS) for the LCAO calculations representing Guassian-type functions is crucial, as the results depend heavily on its quality. In this study, we introduce a new basis set (BS) visual representation, which helps us (1) analyze the collective behavior of individual atoms’ shell exponents (s, p, and d), (2) better compare different BSs, (3) identify atom-type invariant relationships, and (4) suggest a robust method for building a local all-electron BS (denoted as BS1) from scratch for each atom type. To compare our BS1 with the others existing in the literature, we calculate the basic bulk properties of SrTiO3 (STO) in cubic and tetragonal phases using several hybrid DFT functionals (B3LYP, PBE0, and HSE06). After adjusting the exact Hartree–Fock (HF) exchange of PBEx, HSEx, and the state-of-the-art meta-GGA hybrid r2SCANx functionals, we find the r2SCAN15 and HSE27 for BS1, with the amount of exact HF exchange of 0.15 and 0.27, respectively, perform equally well for reproducing several most relevant STO properties. The proposed robust BS construction scheme has the advantage that all parameters of the obtained BS can be reoptimized for each new material, thus increasing the quality of DFT calculation predictions.

Funder

Latvian Council of Science

M-era.Net

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3