Synthesis of BaZrS3 and BaS3 Thin Films: High and Low Temperature Approaches

Author:

Freund Tim1,Jamshaid Sumbal1,Monavvar Milad1,Wellmann Peter1ORCID

Affiliation:

1. Crystal Growth Lab, Department of Materials Science and Engineering 6, Friedrich-Alexander-Universität Erlangen-Nürnberg, Martensstr. 7, 91058 Erlangen, Germany

Abstract

Current research efforts in the field of the semiconducting chalcogenide perovskites are directed towards the fabrication of thin films and subsequently determine their performance in the photovoltaic application. These efforts are motivated by the outstanding properties of this class of materials in terms of stability, high absorption coefficient near the band edge and no significant health concerns compared to their halide counterparts. The approach followed here is to use stacked precursor layers and is adopted from other chalcogenide photovoltaic materials like the kesterites and chalcopyrites. The successful synthesis of BaZrS3 from stacked layers of BaS and Zr and annealing at high temperatures (~1100 °C) with the addition of elemental sulfur is demonstrated. However, the film shows the presence of secondary phases and a flawed surface. As an alternative to this, BaS3 could be used as precursor due to its low melting point of 554 °C. Previously, the fabrication of BaS3 films was demonstrated, but in order to utilize them in the fabrication of BaZrS3 thin films, their microstructure and processing are further improved in this work by reducing the synthesis temperature to 300 °C, resulting in a smoother surface. This work lays the groundwork for future research in the fabrication of chalcogenide perovskites utilizing stacked layers and BaS3.

Funder

Deutsche Forschungsgemeinschaft

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3