CO2 Promoting Polymorphic Transformation of Clarithromycin: Polymorph Characterization, Pathway Design, and Mechanism Study

Author:

Hou Lixin1ORCID,Jing Dingding2,Wang Yanfeng1,Bao Ying1

Affiliation:

1. School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China

2. Asymchem Life Science (Tianjin) Co., Ltd., Tianjin 300072, China

Abstract

Carbon dioxide (CO2) has a wide range of uses such as food additives and raw materials for synthetic chemicals, while its application in the solid-state transformation of pharmaceutical crystals is rare. In this work, we report a case of using 1 atm CO2 as an accelerator to promote the polymorphic transformation of clarithromycin (CLA). Initially, crystal structures of Form 0′ and three solvates were successfully determined by single crystal X-ray diffraction (SCXRD) analysis for the first time and found to be isomorphous. Powder X-ray diffraction (PXRD) and thermal analysis indicated that the solvate desolvates and transforms into the structurally similar non-solvated Form 0′ at room temperature to ~50 °C. Form 0′ and Form II are monotropically related polymorphs with Form II being the most stable. Subsequently, the effect of CO2 on the transformation of CLA solvates to Form II was studied. The results show that CO2 can significantly facilitate the transformation of Form 0′ to Form II, despite no significant effect on the desolvation process. Finally, the molecular mechanism of CO2 promoting the polymorphic transformation was revealed by the combination of the measurement of adsorption capacity, theoretical calculations as well as crystal structure analysis. Based on the above results, a new pathway of preparing CLA Form II was designed: transform CLA solvates into Form 0′ in 1 atm air at 50 °C followed by the transformation of Form 0′ to Form II in 1 atm CO2 at 50 °C. This work provides a new idea for promoting the phase transformation of pharmaceutical crystals as well as a new scenario for the utilization of CO2.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3