Effect of Changing and Combining Trivalent Metals in the Structural and Electronic Properties of Cu-Based Crystal Delafossite Materials

Author:

Cerutti Torres Joeluis Cerutti12ORCID,Sánchez-Palencia Pablo2ORCID,Jiménez-Sáez José Carlos1ORCID,Wahnón Perla2ORCID,Palacios Pablo12ORCID

Affiliation:

1. Departamento de Física Aplicada a las Ingenierías Aeronáutica y Naval, ETSI Aeronáutica y del Espacio, Universidad Politécnica de Madrid, Pz. Cardenal Cisneros, 3, 28040 Madrid, Spain

2. Instituto de Energía Solar, ETSI Telecomunicación, Universidad Politécnica de Madrid, Ciudad Universitaria, s/n, 28040 Madrid, Spain

Abstract

Cu-based ternary oxides with delafossite structure have received considerable attention in recent years for their versatility in a wide range of applications, among which is the possibility to use them in heterostructure solar cells as hole transport layers, due to their promising behavior as p-type conducting oxides. Ab initio calculations have been performed with density functional theory to investigate the role of the trivalent metal within the CuMO2 structure and the dependence of structural and electronic properties with the species (M = Al, Ga, In, Fe, Cr, Co, Sc, Y) occupying the site of the metal. Generalized Gradient Approximation also including a Hubbard term and nonlocal Heyd–Scuseria–Enzerhof screened hybrid functional schemes were tested and their results were compared. Excellent agreement with experimental lattice parameters and measured gaps have been found. The use of hybrid functionals in HSE approximation considerably improves the bandgaps when compared with the experimental results but takes considerable time to converge, hence the need to explore less demanding methodologies. Trends in the geometry as well as in the electronic properties are discussed, and the effect of mixing different metals (CuMxN1−xO2, M, N being the aforementioned elements) in the geometry and electronic properties of these delafossite materials is investigated. Due to the high cost of HSE calculations, especially when supercells are needed to model several x concentrations, statistical models and techniques based on machine learning have also been explored to predict HSE bandgap values from GGA and structural information.

Funder

Comunidad de Madrid

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3